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ABSTRACT 

             This communication presents a numerical simulation study conducted on Perovskite Solar Cells 

(PSCs) featuring MAPbI3 as the light-absorbing layer, utilizing the Solar Cell Capacitance Simulator 

(SCAPS-1D) software. The present study focuses on a single-junction solar cell architecture comprising 

TiO2/MAPbI3/Spiro-OMeTAD. SCAPS was employed to simulate how changes in the thickness of the 

absorber layer and the concentration of charges and defects within the absorber material affect the 

photovoltaic performance parameters of PSCs. The straightforward architecture of the solar cell has 

streamlined the investigation and optimization of device parameters. The 1D optimization of the PSC 

proposed in this study has led to optimized thickness of active layers, as well as the concentration of charges 

and defects within the MAPbI3 absorber material. The present research work reports an optimum thickness 

of 450 nm for MAPbI3 absorber material. The optimized concentration of defects has been found to be 10
14

 

cm
-1

. The defect charge type in the absorber layer has not been found to affect the photovoltaic parameters 

of the PSC. 
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1. Introduction 

Hybrid organic-inorganic perovskite solar cells (PSCs) have garnered global interest due to their 

excellent characteristics, comprising a high coefficient of absorption, elevated carrier mobility, extended 

carrier lifetime, and straightforward fabrication process [1-5].  The standard formula for perovskites is 

represented as ABX3, where A stands for an organic methylammonium (CH3NH3
+
) ion [6] or 

formamidinium (NH=CHNH3
+
) ion [7-9], B represents an inorganic cation such as Pb

2+
 or Sn

2+
, and X 

denotes a halogen ion, typically I
-
, Br

-
, or Cl

-
. Among various combinations, the prevalent halide perovskite 

is methylammonium lead iodide (MAPbI3) [10]. In 2009, Kojima and co-workers reported the first PSC 

[11]. Solid sensitizers used by them in dye-sensitized solar cells (DSSCs) having liquid electrolyte 
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comprised methylammonium lead iodide (CH3NH3PbI3, 'MAPbI3') and methylammonium lead bromide 

(CH3NH3PbBr3, 'MAPbBr3'). 

Despite rapid advances, some material properties that are critical to photovoltaic performance are 

still poorly understood. Comprehending the origins of the various features of ABX3 materials could be a 

crucial step in the adoption of perovskites-based photovoltaics on a broad scale. In this context, a 

computational technique capable of accurately estimating various material properties, allowing for the 

design of new materials and the interpretation of their qualities, is essential. Various studies on perovskite 

solar cells utilising SCAPS are reported in the literature [12-15]. Abdelaziz et al. [16] (2020) used SCAPS 

device modelling to study the photovoltaic performance parameters of a formamidinium tin-based PSC, 

reporting a PCE of 14.03 %. Raoui et al. (2019) examined the MAPbI3-based perovskite solar cell 

performance using a range of charge selective contacts. 

Many features of perovskite materials are still unknown. Three uncommon findings in particular have 

attracted great attention: (i) the slow electrical response of the material when exposed to light [17,18]; (ii) 

the anomalous hysteresis behaviour of the current–voltage (J–V) curves displayed by several PSC based 

devices [19–24]; and (iii) recent reports on giant switchable PV device [25, 26]. The most widely used 

hypotheses to explain the features of PSCs are: (i) charge trapping [27-30], (ii) ferroelectricity [31-34], and 

(iii) ion/defect migration or conductivity. Deep defects at the band gap center become more difficult to deal 

with because they trap both kinds of carriers, giving charge transport recombination plenty of time [35-37]. 

The energies of transition-state of all recognized typical point traps in MAPbI3 complex were examined by 

Yin et al., who also found evidence of shallow-level defects and deep-level defects in the bandgap [38]. 

Space-charge-limited current measurements [39] were used to identify shallow defects, which had a density 

of about 10
10

–10
11

 cm
−3

. On the other hand, deep defects, which had a density of 10
14

–10
16

 cm
−3

, were 

characterized by means of time-resolved photoluminescence [40], transient photocurrent measurements [41], 

and deep-level transient spectroscopy [42]. Irrespective of the processing method used, Sung Heo et al. [42] 

detected two types of deep defect concentrations at energies below the conduction band edge at 0.65 eV (E1) 

and 0.76 eV (E2) in their perovskite solar cells that were created using both one-pot and cuboid procedures. 

Utilizing the SCAPS-1D solar cell simulation software, we present simulations of single-junction 

MAPbI3 solar photovoltaic cells. The aim of this study is to enhance comprehension of lead halide-based 

PSC performance by investigating the effect of thickness of the light absorbing layer, density of defects, and 

charge type on photovoltaic performance of the device. Additionally, the modeling outcomes could offer 

valuable understandings for the design and fabrication of forthcoming lead halide-based PSCs. 

2. Simulation Methodology 

In the current study, we employed the Solar Cell Capacitance Simulator (SCAPS) version 3.3.10 (ELIS, 

University of Gent, Belgium) as our simulation platform. This software operates on the three coupled 

differential equations: (1) Poisson's Equation, (2) Continuity equation for holes, (3) Continuity equation for 

electrons [43-46]: 
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Here, ε represents the permittivity, electron charge is denoted by q, ψ gives the electrostatic potential and n 

and p represent the concentration of electrons and that of free holes respectively, trapped electrons is given 

by nt while pt gives trapped hole, concentrations of ionized donor-like doping is given by ND 
+
 and 

concentration of ionized acceptor-like doping is given by NA
−
, Rn(x), Rp(x) are the rates of recombination 

for electrons and holes, G(x) gives the rate of generation, Jn and Jp show the current densities for electron 

and hole respectively. It has been applied to simulation research on several solar cell types [47-52]. 

In this simulation work single junction planar structure has been considered, in which the transparent n-type 

metal oxide semi-conductor was modelled by using ETM TiO2, CH3NH3PbI3 as light harvesting material, 

and Spiro-OMeTAD has been used as hole transport material (Fig. 1). Table 1 lists the values of the input 

parameters for simulation taken into account in SCAPS-1D, which were taken from theory and reported in 

literature [53-67]. 

 

Figure 1: Schematic of the perovskite solar cell structure simulated in the present study. 

Table 1: Parameters used for simulation of the perovskite solar cell [53-67] 

Parameter n-TiO2 MAPbI3 Spiro-OMeTAD 

Thickness 

(nm) 

90 450 Wide-range 

Eg (eV) 3.2 3.2 2.9 

χ (ev) 4 4 2.2 

Ɛr 100 100 3 

Nc (1/cm
3
) 1 × 10

21
 1 × 10

21
 2.5 × 10

20
 

Nv (1/cm
3
) 2 × 10

20
 2 × 10

20
 2.5 × 10

20
 

µn (cm
2
/Vs) 0.006 0.006 0.0021 

µp (cm
2
/Vs) 0.006 0.006 0.0026 

NA (1/cm
3
) - - 1 × 10

18
 

ND (1/cm
3
) 5.06 × 10

19
 5.06 × 10

19
 - 
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In the present device simulation of solar cell, interface defect layer (IDL) of TiO2/MAPbI3 and 

MAPbI3/HTM have also been introduced. The Spiro-OMeTAD layer work function has been considered 

with respect to the energy level of the valence band and input parameters have been summarized in Table 2. 

AM 1.5G spectrum was used to obtain current density-voltage (J-V) curve under illumination. 

Table 2: Interface layer parameters considered in the present study 

Interface Type of 

Defect 

Capture cross 

section 

electrons/holes 

(cm
2
) 

Energetic 

distribution 

Reference 

for defect 

energy 

level Et 

Total 

density 

(integrated 

over 

all energies) 

(1/cm
2
) 

Total 

density 

(integrated 

over all 

energies) 

(1/cm
2
) 

TiO2/MAPbI3 Acceptor 1×10
−17

 Single Above the 

VB 

0.32 1×10
9
 

    1×10
−18

   maximum     

MAPbI3/Spiro-

OMeTAD 

Acceptor 1×10
−18

 Single Above the 

VB 

0.07 1×10
9
    –    

1×10
12

 

    1×10
−19

   maximum     

 

3. Results and discussion 

3.1. Influence of thickness of MAPbI3 layer 

For investigating the impact of one or more factors on solar cell properties, SCAPS provides a batch option. 

Users may pick the parameter to be adjusted, as well as the range and mode, in the 'Batch set-up' window. 

'Batch set-up' allows for the definition of several parameters that may be adjusted simultaneously or in a 

hierarchical fashion. 

In this work, we examined the effects of changing the thickness of light-absorbing MAPbI3 layer on the 

Perovskite solar cells' photovoltaic performance characteristics. In ten-fold steps, the thickness of the 

absorber layer was changed from 0.1µm to 1µm. Figure 2 shows the PV parameters that were derived from 

the simulations. The efficiency of solar cells increases noticeably as the thickness of the absorber layer rises, 

as seen in Figure 2. But over 450 nm in thickness, the rate of efficiency enhancement decreases noticeably. 

As a result, we have tuned the light-absorbing Perovskite layer's thickness to be 450 nm. 
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Figure 2: Variation of photovoltaic parameters with the thickness of the absorber perovskite layer of solar cells 

3.2. Effect of defects in perovskite material on the device performance 

Since photoelectrons are primarily produced and reassembled in the light absorbing layer, the density and 

kind of defects in perovskite material show a critical part in determining the photovoltaic performance of 

PSCs. Table 3 lists the various defect characteristics that were investigated in this simulation investigation. 

The effect of charge type and concentration of various flaws on the efficiency of PSCs is depicted in Fig. 3. 

Table 3: Defect parameters used in the present simulation experiment 

Type of Defect DONOR/ NEUTRAL/ACCEPTOR 

Electron Capture cross section (cm
2
) 1X 10

-15
 

Hole Capture cross section (cm
2
) 1X 10

-15
 

Energetic distribution Single 

Defect energy level Reference Et Above EV of left side 

Energy with respect to reference (eV) 0.600 

Total density  (1/cm
2
) 1 X 10

12
 - 1 X 10

20
 

 

 

Figure 3: Effect of different defects charge type and concentration on the efficiency of perovskite solar cell. 
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The lifetime of minority charge carriers within the light-absorbing layer is dictated by the concentration of 

bulk defects [68]. Photovoltaic performance remains consistent until the defect density reaches 10
14

 cm
-3

, 

regardless of the type of defects. It has been observed that when the density of defects within the light-

absorbing layer is below 10
14

 cm
-3

, efficiency does not exhibit significant variation. This could be owing to 

the fact that defect-photogenerated carrier scattering is less at lower densities of defects, and hence the solar 

cell device's performance remains unaffected. However, when the defect density is increased to high levels, 

the efficiency drops significantly. When the defects density is increased from 10
14

 to 10
16

 cm
-3

, photovoltaic 

efficiency falls gradually at first, then rapidly. It's also worth noting that the defect charge type has little 

impact on the photovoltaic performance of the simulated perovskite solar cells. 

Due of the material's low thermal stability, organohalide perovskites are susceptible to development of 

defects. Localized states could be introduced by surface imperfections of perovskite and at grain boundaries, 

which could trap photogenerated charge carriers and so produce a field across the material, ultimately 

counteracting the photogenerated potential. 

The crystalline defects that serve as recombination centres have a significant impact on carrier dynamics and 

drastically reduce photoluminescence lifespan, resulting in device performance degradation [69-71]. 

Crystalline defects cause instability difficulties such as ion movement, hysteresis, and chemical degradation 

[72,73]. Therefore, to fully harness perovskite's promise for more competitive photovoltaic devices, defect 

management and mitigation are critical. 

4. Conclusions 

Using SCAPS-1D, simulations were conducted on single-junction perovskite solar cells with a 

TiO2/MAPbI3/Spiro-OMeTAD structure. The impact of the thickness of the absorber layer and the 

concentration and charge of defects on the photovoltaic performance was analyzed. It was found that the 

perovskite layer's thickness, with an ideal thickness of 450 nm, may be adjusted to maximize device 

performance. The study highlights the importance of maintaining defect concentrations in the absorber layer 

below 10
14

 cm
-3

 to achieve enhanced efficiency in perovskite solar cell designs. Additionally, further 

enhancements in perovskite-based solar cell performance can be attained by employing tandem geometries. 
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