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ABSTRACT 

        Forecasting involves predicting what may happen in the future. An essential part of this process is examining 

time series data, especially when it shows nonlinear characteristics. This study concentrates on predicting the prices 

of standard regular gasoline in the United States, which consists of a time series affected by numerous economic and 

seasonal elements. It utilizes two nonlinear time series models: Self-Exciting Threshold Autoregressive (SETAR) and 

Logistic Smooth Transition Autoregressive (LSTAR). SETAR segments the data into distinct regimes based on a 

threshold variable, whereas LSTAR allows more gradual changes between regimes through a logistic function. Past 

research has indicated that both models effectively capture structural shifts in financial and economic time series. By 

assessing the forecasting performance of the SETAR and LSTAR models, this research seeks to identify which model 

better forecasts gasoline price fluctuations that demonstrate nonlinear behavior. The findings are anticipated to 

enhance understanding of energy market trends and aid in making better economic choices. 
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1. Introduction 

Forecasting is a crucial tool for supporting effective and efficient planning, especially in the fields of 

economics and business, where decision-making plays a critical role (Brockwell & Davis, 2002). Generally, 

forecasting is categorized into three-time horizons: short-term, medium-term, and long-term. Short-term forecasting 

refers to predictions made over several days to a few months; medium-term forecasting typically covers one to two 

years, and long-term forecasting projects trends over several years into the future (Granger & Jeon, 2007; Krisanti et 

al., 2024).  

One commonly applied approach in forecasting is time series analysis, which involves examining data 

recorded at consistent time intervals to identify patterns and generate future projections (Wei, 2006). A relevant 

example of time series forecasting is the analysis of conventional regular gasoline prices in the United States. 

According to data from the Federal Reserve Economic Data (FRED), this type of gasoline, with an octane rating of 

around 87, is widely consumed due to its affordability. However, its price is subject to fluctuations caused by various 

factors such as global crude oil prices, distribution costs, taxation, and seasonal demand. These fluctuations exhibit 
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nonlinear patterns over time, making accurate forecasting essential for guiding economic strategies and shaping 

effective energy policies. 

To handle nonlinear patterns, researchers often use the SETAR (Self-Exciting Threshold Autoregressive) and 

LSTAR (Logistic Smooth Transition Autoregressive) models. SETAR divides data into distinct regimes based on 

threshold values. The process of determining the SETAR model involves the number of regimes (𝑚), autoregressive 

order (𝑝), delay parameters, and threshold variables. The 𝑗-regime SETAR (𝑑, 𝑝1, . . . , 𝑝𝑗  ) model is defined as follows 

(Tongan & Booij, 2023). 

𝑍𝑡 =

{
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LSTAR uses a logistic function to model smoother transitions between regimes. The LSTAR model in simple form 

can be written as follows:  

𝑋𝑡 = 
1
′ 𝑌𝑡 (1 − (

1

1+exp(−𝛾(𝑆𝑡−𝑐))
)) + 

2
′ 𝑌𝑡 (

1

1+exp(−𝛾(𝑆𝑡−𝑐))
) + 𝜀𝑡  

where 𝑆𝑡 = 𝑋𝑡−1 with is the delay parameter 𝑙 which is a positive integer with 𝑙 > 0. The parameter c is known as the 

threshold while 𝛾 indicates the speed and smoothness of the transition (Terasvirta & Granger, 1993). 

Previous studies have shown the effectiveness of these models. For instance, Krisanti et al. reported that the 

LSTAR model achieved a low AIC value, indicating a good model fit (Krisanti et al., 2024). Similarly, Tongan and 

Booij found that the SETAR model outperformed the K-Nearest Neighbors (K-NN) method by yielding a lower 

RMSE (Tongan & Booij, 2016). Building on these findings, the present study aims to compare the performance of the 

SETAR and LSTAR models in forecasting conventional gasoline prices. By analyzing their ability to capture 

nonlinear patterns and regime shifts, this research seeks to determine which model produces more accurate forecasting 

results. 

2. METHODS AND MATERIAL  

The data used in this study are secondary time series data taken from the Federal Reserve Economic Data 

(FRED). This data source can be accessed through the link https://fred.stlouisfed.org/series/GASREGCOVW. This 

dataset contains weekly regular conventional gasoline prices for the period 16 February 2015 to 10 February 2025, 

with a total of 533 observations. The steps taken are as follows: 

1) Plotting regular conventional gasoline price data, 

2) Looking at data stationarity related to variance using Box-Cox transformation, as well as to the average through 

the Augmented Dickey-Fuller test, 

3) Conduct nonlinearity test, 

4) Identifying the SETAR model,  

5) Identify the LSTAR model 

6) Comparing the accuracy of the SETAR model with the LSTAR model seen from the smallest AIC value and 

MAPE value, 

7) Perform forecasting using the selected model on regular conventional gasoline price data for the next 10 periods 

by comparing it with 10 validation data.  
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3. RESULTS AND DISCUSSION 

Plot Identification of Observation Data  

The results of the regular conventional gasoline price data plot are as follows: 

 

Figure 1. Regular Conventional Gasoline Price Data 

Figure 1 shows that the price of regular conventional gasoline in the United States fluctuates significantly 

during the observation period. The highest increase occurs around time point 400, possibly influenced by external 

factors such as energy policy or global oil prices. After that, the price drops sharply and exhibits high volatility. 

Overall, there is no consistent long-term trend, indicating that gasoline prices tend to be influenced by short-term, 

external changes. 

Data Stationarity Check 

In this study, the Box-Cox transformation test and the Augmented Dickey-Fuller (ADF) test are conducted to 

evaluate whether the regular conventional gasoline price data is stationary in terms of its variance and average. The 

results of the Box-Cox transformation of the regular traditional price of gasoline data are as follows: 

Table 1. Box-Cox Transformation 

(𝜆) 1 

 

The Box-Cox lambda (λ) value of 1 indicates that the data meets the requirements for variance stationarity. However, 

to ensure overall stationarity, an ADF test on the average regular conventional gasoline price data is necessary. 

Table 2. Augmented Dickey-Fuller (ADF) Test 

Augmented Dickey-Fuller Test (𝑡-statistics) 𝑝-value 

-2.7277 0.2703 

 

Based on Table 2, the 𝑝-value (0.2703)  > 𝛼, so accept 𝐻𝑜. This indicates that the regular conventional 

gasoline price data is not stationary. Therefore, a differencing process is required on the average. Below are the ADF 

test results after differencing once:  

Table 3. One-Time Differencing Augmented Dickey-Fuller (ADF) Test 

Augmented Dickey-Fuller Test (𝑡-statistics) 𝑝-Value 

-7.0856 0.01 

 

Based on Table 3, the 𝑝-value (0.01) < 𝛼, so reject 𝐻𝑜. This indicates that the regular conventional gasoline price 

data is stationary. 
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Nonlinearity Test 

Nonlinearity tests can be done using the Terasvirta test. This test aims to identify whether the regular 

conventional gasoline price data contains nonlinearity or not, as follows: 

 

Table 4. Nonlinearity Test Results 

𝐹 𝑝-value 

17.779 3.406e-08 

 

Based on Table 6, the nonlinearity test results show that the 𝑝-value (3.406𝑒 − 08)  < 𝛼 (0.05). Thus, it can be 

concluded that rejecting 𝐻0 which means that regular conventional gasoline price data is nonlinear. Before entering 

into SETAR and LSTAR modeling, data division will be carried out, namely 523 data used as training data and 10 

data used as validation data. 

 

SETAR Modeling 

The SETAR model is identified by determining the autoregressive order (𝑝), number of regimes (𝑗), delay 

length (𝑑), and threshold value (𝑟). This process also involves embedding dimension (𝑚) and time distance (𝜏), which 

are determined based on the minimum entropy value. The following table presents the embedding dimension and 

entropy results. 

Table 5. Embedding Dimension Value and Time Distance 

Time Distance Embedding Dimension Entropy 

1 3 0.9891891 

1 4 0.9786215 

1 5 0.9552358 

1 6 0.9741173 

1 7 0.9946277 

 

Based on the table, the optimal embedding dimension is 5, with the lowest entropy of 0.9552358 and a time distance 

of 1. Next, the number of regimes is determined through a nonlinearity test against the threshold by comparing the 𝑝-

value against the significance level of 0.05. The test results are presented in the following table:  

Table 6. Nonlinearity vs Threshold Test Results 

Test 𝐹 Test Statistics 𝑝-value 

Linear AR vs 1 Threshold SETAR 46.99551 0.001 

Linear AR vs 2 Threshold SETAR 66.44195 0.001 

1 Threshold SETAR vs 2 Threshold SETAR 17.82317 0.300 

 

Table 6 shows that the data fit the one threshold SETAR (2-regime) model, because the linear AR vs. one 

threshold and linear AR vs. two threshold tests produce a 𝑝-value <  0.05, while the one threshold vs. two threshold 

test produces a p-value >  0.05. Therefore, the best model is SETAR which has one threshold. Furthermore, the 
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parameters of delay length (𝑑), the threshold value (𝑟), and AR order for each regime (𝑝₁, 𝑝₂) are determined based 

on the smallest AIC value, using embedding dimension five and delay one. 

 

Table 7. AIC Value of 2-Regime SETAR Model 

Delay 𝑝1 𝑝2 𝑟 AIC 

0 1 3 27 4019.412 

0 1 4 27 4019.553 

0 1 4 28 4019.612 

0 1 3 28 4019.765 

0 1 4 26 4020.306 

0 2 3 27 4021.333 

0 2 4 27 4021.473 

0 1 3 48 4021.477 

0 1 5 27 4021.518 

0 2 4 28 4021.523 

 

Based on Table 7, the best model is the 2-regime SETAR (0,1,3), with a threshold of 27 and the lowest AIC of 

4019.412. This model is used for parameter estimation and significance testing, the results of which are presented in 

the next table. 

 

Table 8. SETAR Model Parameter Estimation Results 

Coefficient Estimation 𝑝-value AIC MAPE 

𝜙0,1 6.482699 0.0254908 

4017 13.43 % 

𝜙1,1 0.777328 < 2.2e-16 

𝜙0,2 16.922545 0.0116557 

𝜙1,2 0.276478 0.0005112 

𝜙2,2 -0.205751 0.0064303 

𝜙3,2 0.369436 7.7e-05 

 

Based on Table 8, it can be seen that the SETAR (0,1,3) model has a p-value of each significant coefficient (𝑝 −

𝑣𝑎𝑙𝑢𝑒 < 0.05). Then, the equation for the 2-regime SETAR (0,1,3) model is as follows:   

𝑍𝑡 = {
6.482699 + 0.777328t−1 + 𝜀𝑡 ,                                                           𝑍𝑡 ≤ 27
16.922545 + 0.276478t−1−0.205751t−2 + 0.369436t−3 + 𝜀𝑡 , 𝑍𝑡 < 27

 

 

LSTAR Modeling 

The next stage is LSTAR modeling, which begins with Box-Jenkins model identification through ACF and 

PACF plots to determine the ARMA model, followed by parameter estimation, diagnostic tests, and LSTAR 

parameter estimation. 
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Figure 2. ACF Plot of Regular Conventional 

Gasoline Price Data 

 

Figure 3. PACF Plot of Regular Conventional 

Gasoline Price Data 

 

From the analysis of the ACF and PACF plots shown to form the conjecture model in Table 9, the next step 

is to estimate the parameters of the model. This process can be done by looking at the probability values of 

the parameters that have been determined or by finding the smallest AIC value. 

Table 9. Box-Jenkins Model 

No Box-Jenkins Model AIC 

1 ARMA(1,0) 5539.04 

2 ARMA(0,1) 5566.35 

3 ARMA(1,1) 5540.94 

4 ARMA(2,0) 5540.98 

5 ARMA(2,1) 5541.40 

 

Based on Table 9, the ARMA(1,0) model is chosen as the best model because it has the lowest AIC value. 

Once the model is determined, diagnostic tests are conducted to ensure that the residuals fulfill the basic 

assumptions of the model. These tests include the Ljung-Box test for autocorrelation, the Kolmogorov-

Smirnov test for normality, and the ARCH test to detect heteroscedasticity. The results of these tests are 

important to assess the feasibility of the model before it is used in LSTAR modeling. 

Table 10. Ljung-Box Test Results 

Model 𝑋-squared 𝑝-value 

ARMA(1,0) 110.09 0.3226 

 

Based on Table 10, the Ljung-Box test results show that the ARMA(1,0) model has a 𝑝-value (0.3226)  > 𝛼 (0.05). 

Therefore, it can be concluded that it does not reject 𝐻0, which means there is no autocorrelation between residuals. 

Table 11. Normality Test Results 

Model Dcount 𝑝-value 

ARMA(1,0) 0.0747981 0.05878 

 

The normality test results, based on Table 11, show that the ARMA (1,0) model has a p-value (0.05878)  > 𝛼 (0.05). 

So, it can be concluded that do not reject 𝐻0 which means that the residuals in the data are normally distributed. 
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Table 12. Heteroscedasticity Test Results 

Model Chi-Squared P-Value 

ARMA(1,0) 16.446 0.1716 

 

The heteroscedasticity test results, based on Table 12, show that the ARMA(1,0) model has a 𝑝-value (0.1716)  >

𝛼 (0.05). Therefore, it can be concluded that we do not reject 𝐻0 which means there is no heteroscedasticity. 

The next step is to estimate the parameters of the LSTAR model by determining the model order (m), which is 

determined based on the results of the Partial Autocorrelation Function (PACF) plot analysis in Figure 3. Based on the 

results of the study, the relevant order is at the 1st and 3rd lags. Therefore, parameter estimation for the LSTAR model 

is performed using orders 𝑚 = 1 and 𝑚 = 3, assuming a delay length of 1 and two transitions. The parameter 

estimates of the LSTAR model are presented in the following table. 

Table 13. Parameter Estimation of LSTAR Model 

Model Parameter Estimation 𝑝-value AIC MAPE 

LSTAR(1,1) 

𝜙0,1 5.062159 0.02782 

4037 11.72 % 

𝜙1,1 0.745199 <2.2e-16 

𝜙2,0 8.001653 0.48236 

𝜙2,1 -0.481552 5.901e-06 

𝛾 20.013021 0.95644 

𝑐 59.491659 8.123e-11 

LSTAR(3,1) 

𝜙0,1 6.4555902 0.0249661 

4026 12.75 % 

𝜙1,1 0.7876944 <2e-16 

𝜙1,2 -0.0178908 0.7743062 

𝜙1,3 -0.0020537 0.9659175 

𝜙2,0 10.4670380 0.1487183 

𝜙2,1 -0.5112176 2.839e-06 

𝜙2,2 -0.1878595 0.0538198 

𝜙2,3 0.3714895 0.0003544 

𝛾 20.0044117 0.9539811 

𝑐 27.5367700 0.0015540 

 

From Table 13, the results of model estimation and evaluation show that LSTAR(1,1) is selected as the best model. 

Although the LSTAR(3,1) model has a lower AIC value, the LSTAR(1,1) model provides more accurate prediction 

results (MAPE 11.72%), and most of its parameters are statistically significant. Therefore, the equation of the 

LSTAR(1,1) model can be expressed as follows:   

𝑋𝑡 = (5.062159 + 0.745199𝑋𝑡−1) (1 − (
1

1+exp(20.013021(𝑋𝑡−1−59.491659))
))  

+(8.001653 − 0.481552𝑋𝑡−1) (
1

1+exp(20.013021(𝑋𝑡−1−59.491659))
) + 𝜀𝑡  
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Model Comparison 

From the analysis results between SETAR and LSTAR models, the next step is to choose the best model by 

referring to the smallest AIC value and the minimum MAPE value. The comparison of SETAR and LSTAR models is 

shown as follows: 

Table 14. Comparison of SETAR and LSTAR Models 

Model AIC MAPE 

SETAR(0,1,3) 4017 13.43 % 

LSTAR(1,1) 4026 11.72 % 

 

Based on Table 14, the LSTAR(1,1) model has a lower MAPE value (11.72%) compared to the SETAR(0,1,3) model 

(13.43%), which indicates that the LSTAR(1,1) model provides more accurate forecasting results. Although the AIC 

value of the SETAR(0,1,3) model is smaller (4017), in the context of forecasting, a higher level of accuracy is 

preferred. Therefore, the LSTAR(1,1) model is selected as the best model to predict the price of regular conventional 

gasoline. 

 

Forecasting 

The best model chosen in this study is the LSTAR(1,1) model based on forecasting accuracy criteria, namely 

by looking at the smallest MAPE value. Next, the price of regular conventional gasoline is forecasted for the next 10 

periods, from the 524th to the 533rd period. These forecasting results are then validated by comparing them against 

the last 10 actual data from the dataset, which is used as validation data. The comparison between the actual data and 

the forecasting results is shown in Table 15. 

Table 15. Forecasting Results of Regular Conventional Gasoline Price Data 10 Periods ahead 

Period Actual Data Forecasting Results MAPE 

524 3.021 3.064 1.43% 

525 2.997 3.101 3.46% 

526 2.951 3.133 6.17% 

527 2.947 3.162 7.30% 

528 2.943 3.189 8.36% 

529 2.999 3.214 7.17% 

530 3.040 3.238 6.51% 

531 3.118 3.261 4.57% 

532 3.043 3.284 7.90% 

533 3.020 3.304 9.40% 

Average MAPE 6.23% 
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Figure 4. Results of Data Forecast of Regular Conventional Gasoline Price 10 Periods ahead 

 

Based on Table 15 and Figure 4, the forecasting results in 10 validation periods show that the predicted value is quite 

close to the actual data, such as in the 524th period with actual data of $3,021/gal and forecasting results of 

$3,064/gal, and the 525th period with actual data of $2,997/gal and forecasting results of $3,101/gal. This shows that 

the LSTAR(1,1) model has a good ability to follow the movement pattern of regular conventional gasoline prices, 

making it suitable for forecasting purposes. 

 

4. CONCLUSION 

Based on the analysis results, the SETAR(0,1,3) and LSTAR(1,1) models are equally capable of representing 

nonlinear patterns in regular conventional gasoline price data. The SETAR model provides a lower AIC value of 

4017, which indicates a statistically good model fit. However, in the context of forecasting, accuracy is a key 

consideration. The LSTAR(1,1) model has the advantage of a lower MAPE value of 11.72% compared to SETAR, 

which recorded a MAPE of 13.43%. Therefore, despite the higher AIC value, the LSTAR(1,1) model is considered 

more appropriate for forecasting purposes. 

In addition, the prediction results for the 10 validation periods show that the LSTAR(1,1) model produces 

forecasting values that are close to the actual data. For example, in the 524th and 525th periods, the difference 

between the actual and predicted values is very small, indicating that the model is quite responsive to price 

movement patterns. This proves that LSTAR(1,1) is not only able to capture nonlinear dynamics but also provides 

good prediction performance, making it reliable in supporting decision-making regarding future fuel prices. 
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