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ABSTRACT 

           The study examines how machine learning (ML) methods can be incorporated into production engineering 

practices. The paper highlights data preprocessing and cleaning as essential steps to maintain data quality and 

reliability for ML applications. The review shows the production environment challenges that include missing data 

values and the presence of outliers along with data inconsistencies. The text explains how advanced automation 

techniques decrease human involvement while improving feature extraction methods, which produce uniform features 

across different manufacturing systems. The paper emphasizes that effective model deployment relies on rigorous data 

engineering pipelines that perform comprehensive data ingestion, transformation, and feature engineering. The review 

intends to explore the existing ML applications within production engineering while identifying key practices that 

enable model readiness and reliability. 
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INTRODUCTION 

ML, which belongs to the artificial intelligence (AI) family, represents a groundbreaking technology that 

permits computer programs to learn independently from data through a self-learning process, which has received 

substantial progress, especially with deep learning (DL) applications across different sectors [1]. ML integration in 

production engineering provides engineers with an all-encompassing framework to implement ML-based models 

throughout essential production tasks, thereby boosting operational efficiency and lowering costs while promoting 

sustainable development [2]. This technology transforms manufacturing processes into interconnected systems that 

support dynamic operations with extensive data capabilities, which define Industry 4.0 [3]. The substantial growth of 

accessible data throughout recent decades has positioned ML as an effective approach to solve advanced 

manufacturing problems [4]. 

ML for production engineering enables computer systems to learn independently from human assistance and 

modify their actions, which leads to more intelligent and adaptive production processes [4]. Numerous manufacturing 

sectors utilize this technology because traditional methods fail to manage large data volumes efficiently [5]. 

Specialized ML approaches need to fulfill production engineering requirements in accuracy, scalability, complexity 

management, verifiability, and usability, unlike traditional methods, which fall short [6]. Through systematic ML 

implementation, production optimization and control alongside turndown management and maintenance and 

intervention planning will benefit substantially because they represent key areas of ML value delivery [2]. 
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Production engineering has witnessed a dramatic increase in the implementation of ML to solve various 

challenges such as predictive maintenance alongside process optimization and quality control while managing 

resource scheduling and anomaly detection [4]. ML applications use their data analysis capabilities to detect 

inefficiencies and predict problems while improving manufacturing processes throughout the production value chain 

[3]. Predictive maintenance made possible through ML technology is now vital for manufacturing sectors to achieve 

optimal performance and safety through the analysis of machine data and early identification of anomalies that might 

disrupt operations [7]. ML integration into production infrastructure organization substantially boosts profitability, 

especially when new business process integration technologies evolve alongside industrial automation advances [8]. 

The application of ML within production engineering shows great potential yet encounters numerous 

obstacles such as data privacy issues, insufficient skilled workforce availability, and essential partnerships between 

manufacturers and technology vendors [9]. The prevailing limitations in this context require structured ML 

deployment methods that encompass detailed protocols for data acquisition and preprocessing together with model 

training procedures [7]. The move toward Industry 4.0 standards in production systems brings substantial potential 

through ML but requires overcoming intricate integration obstacles to unlock its full advantages [1]. 

This extensive evaluation examines the dynamic domain of ML within production engineering by analyzing 

its applications together with its benefits and challenges and projecting its future directions. The study provides a 

structured analysis of existing research papers and technological developments while showcasing practical 

applications that illustrate the transformation of production engineering methods through ML across different 

manufacturing industries. The review integrates knowledge from multiple fields to equip production engineers, 

researchers, and industrial professionals with comprehensive insights about how ML can transform manufacturing 

processes to boost efficiency and drive innovation. 

STEPS TO IMPLEMENT ML IN PRODUCTION ENGINEERING 

A structured end-to-end approach that includes problem identification, data handling, model building, and 

deployment, as well as continuous monitoring and retraining, is necessary for ML implementation in production 

engineering [10]. 

Step 1: Problem Definition and Requirements Gathering 

The initial step of this process requires a detailed identification of the production engineering problem that 

needs resolution [10]. To understand operational goals alongside constraints and performance metrics requires 

involving relevant stakeholders, specifically for business targets like fault detection accuracy and cost reduction 

objectives [2]. Break down the problem into specific, measurable objectives that align with data-driven solution 

methods [11]. 

Step 2: Data Collection and Organization 

High-quality relevant data forms the base for any successful ML initiative [12]. Production engineering data 

collection encompasses sensor readings along with equipment maintenance logs, process control metrics, production 

yields, and petrophysical properties, according to sources [6, 2, 12]. The best practices require organizations to 

perform detailed reviews of available data sources while cataloging existing models and simultaneously evaluating 

data accuracy and completeness as well as understanding dependencies between data types [2, 12, 13]. The 

implementation of automated data collection processes, especially for expansive or decentralized datasets, reduces 

human errors and enhances data quality [14]. Domain expertise input combined with an organized data inventory 

helps to identify relevant engineering task features effectively and efficiently [15]. 
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Step 3: Data Preprocessing and Cleaning 

Production environment data acquisition usually leads to the accumulation of information that includes 

missing entries and outliers as well as inconsistent records and various data formats [12, 16]. Preprocessing involves 

several steps: The data preprocessing process includes cleaning data through missing value and outlier handling while 

also normalizing data or performing feature scaling to validate data consistency [16, 17]. Advanced automation 

decreases human involvement while improving feature extraction and implementing strong quality control to deliver 

organized, consistent features throughout various production settings [12]. The development of robust data 

engineering pipelines through complete data ingestion and transformation processes together with feature engineering 

is essential for maintaining model readiness and reliability [17, 18]. 

Step 4: Feature Engineering and Selection 

The effectiveness of ML models in production engineering relies heavily on proper feature extraction and 

engineering, which demands extensive knowledge of both the data characteristics and engineering principles [19]. In 

this stage, new features are extracted from raw data through variable transformations and domain knowledge 

integration to generate informative inputs for ML models [19, 20]. The process of selecting features from complex 

datasets is accelerated by automated systems, which help extract petrophysical properties for reservoir simulation and 

analyze pump conditions using sensor data [12, 19]. 

Step 5: Data Partitioning 

In order to develop effective models, the dataset must be divided into training, validation, and test sets [21]. 

The approach provides unbiased model evaluation while supporting hyperparameter optimization and performance 

benchmarking [22]. The partitioning process must maintain representative distributions of operational scenarios found 

in production engineering settings [19]. 

Step 6: Model Selection 

The choice of a suitable ML algorithm requires consideration of the problem type and dataset characteristics 

as well as desired performance attributes [22, 23]. Random forests (RFs) perform better than many other algorithms 

because they handle diverse data effectively [22, 24]. When working with time-series prediction or process 

optimization tasks along with failure detection, it is important to evaluate tree-based models together with neural 

networks and support vector machines (SVM) as well as hybrid methods [20, 25]. The selection of the final model 

requires comprehensive experimentation with various algorithms followed by performance comparisons [26]. 

Step 7: Model Training and Hyperparameter Tuning 

The process of model training applies the chosen algorithm to cleaned training data using iterative 

optimization approaches [27]. Grid search and automated tools applied during hyperparameter tuning improve overall 

model output [25]. Domain-relevant input variability along with feature engineering leads to models that are both 

more interpretable and more effective [19]. 

Step 8: Model Validation and Testing 

Validation and testing processes verify that the trained ML model maintains its performance on new data 

while fulfilling practical deployment standards [28]. Implement complete testing approaches that encompass property-

based testing along with quality attribute scenarios and risk assessment for deployment alongside continuous 

validation frameworks according to references [29, 30, 31]. Robust test cases integrate operational constraints with 

integration requirements to prevent deployment failures [32]. The development process emphasizes reproducibility 

and interpretability to build stakeholder trust while meeting regulatory standards [33]. 
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Step 9: Deployment into Production Environment 

The model deployment process includes embedding the validated model into an active production engineering 

system [10]. Implement containerization tools such as Docker and Kubernetes to achieve portable deployments while 

maintaining scalable operations and resource isolation [34]. ML model deployment benefits from ML Operations 

(MLOps) frameworks such as Kubeflow and MLflow, which provide lifecycle management alongside versioning with 

automated scaling and system health monitoring capabilities [35]. Automated deployment pipelines provide consistent 

maintenance for production system integration [36]. 

Step 10: Continuous Monitoring and Performance Tracking 

ML models deployed in production need ongoing monitoring to ensure performance metrics and prediction 

accuracy remain stable while guaranteeing system reliability [37, 38]. Use drift detection methods to identify changes 

in data distributions, such as data drift and concept drift, while creating automated alerts to report performance drops 

[39, 40]. Organizations utilize diagnostic and logging tools to conduct root cause analysis while ensuring they meet 

operational and regulatory requirements [39]. 

Step 11: Feedback Loop and Model Retraining 

Establish automated feedback loops for retraining ML models to maintain their accuracy and relevance 

through production data changes and evolving requirements [41, 42]. The frequency of retraining models, whether 

periodic or event-driven, must consider operational expenses, while probabilistic models or predictive methods help 

find the best intervals for retraining [43, 44]. Continuous model improvement and system resilience depend on 

integrating real-time monitoring with data versioning and retraining pipelines [42, 45]. Self-updating systems in 

highly dynamic environments benefit from reinforcement learning (RL) or adaptive strategies [46]. 

Step 12: Documentation, Collaboration, and Maintenance 

Ensure complete documentation of modeling activities together with data management and deployment 

processes throughout the entire operation to support reproducibility and troubleshooting while facilitating knowledge 

transfer [33]. Ensure data scientists, engineers, operators, and domain experts work together so all decisions stay 

relevant to context and business goals. Strong governance procedures combined with established institutional 

processes ensure sustainable implementation of models throughout their life cycle. 

Table 1: Steps for Implementing ML in Production Engineering—Summary 

Step Key Activities 

1. Problem Definition Define objectives, engage stakeholders, set metrics 

2. Data Collection & Organization Review sources, automate collection, inventory features, validate quality 

3. Data Preprocessing & Cleaning Handle missing/outlier/noise, normalize/scale, automate QC 

4. Feature Engineering & Selection Derive features, integrate domain knowledge, automate extraction 

5. Data Partitioning 
Split data into train/validation/test sets, maintain operational 

representativeness 

6. Model Selection Select algorithms (e.g., RFs, neural nets), evaluate multiple approaches 

7. Model Training & Tuning Fit model, optimize hyperparameters, iterative improvement 

8. Model Validation & Testing Comprehensive testing (QA scenarios, property based), risk assessment 

9. Deployment 
Integrate with production, use containers, adopt MLOps for automation 

and scaling 

10. Continuous Monitoring Track accuracy, detect drift, establish alerts, root-cause diagnostics 
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Step Key Activities 

11. Feedback Loop & Retraining Automated retraining pipelines, optimize schedules, incorporate new data 

12. Documentation & Collaboration 
Maintain documentation, foster cross-functional teamwork, apply 

governance 

 

BENEFITS AND APPLICATIONS OF ML IN PRODUCTION ENGINEERING 

Benefits of ML in Production Engineering 

Production engineering achieves improved productivity and manufacturing resilience while becoming more 

cost-effective through the diverse benefits provided by ML. 

• Efficiency Improvement and Cost Reduction: ML delivers significant operational efficiency improvements by 

automating standard processes while optimizing production timelines and adapting operational parameters 

through real-time data analysis [48]. ML models help to detect production bottlenecks while minimizing waste 

and refining manufacturing processes, which leads to decreased energy usage together with lower labor 

expenses and enhanced throughput [49]. ML-driven automated defect detection speeds up quality checks 

while minimizing expenses from manual inspections and faulty product reprocessing [50]. Research shows 

that the use of ML in industrial control systems generates cost savings between 10–20% alongside energy 

reductions ranging from 1–10% [49]. 

• Predictive Maintenance and Reliability: The standard approach to maintenance uses scheduled or reactive 

interventions, which create unnecessary downtime and cause unexpected equipment breakdowns [51]. ML-

driven predictive maintenance uses sensor inputs alongside historical information to predict when equipment 

will fail, which enables preventative actions that boost both uptime and the lifespan of machinery [52]. 

Applications with model accuracy rates above 90% in real-world textile manufacturing settings successfully 

reduced unplanned downtime and maintenance expenses, according to research [52]. 

• Quality Improvement and Consistency: ML techniques boost product quality through precise identification of 

key process variables that cause defects, which allows continuous process optimization [53]. The integration 

of feature selection algorithms with ML techniques enables the determination of ideal parameter settings for 

defect-free production, demonstrated by more than 92% accuracy in medical mask manufacturing [53]. 

Quality control systems that rely on ML demonstrate superior capabilities in identifying minor anomalies 

within production data, which aids organizations in achieving zero-defect manufacturing standards [54]. 

• Enhanced Decision-Making: The use of ML to discover production data patterns enables decision-makers to 

operate more intelligently and swiftly despite unpredictable and variable conditions [48]. The ability to 

quickly adapt production processes remains essential for industries involved in process manufacturing and 

discrete part assembly, which face shifting production needs [13]. 

• Automation and Flexible Manufacturing: ML-driven automation and robotics have transformed 

manufacturing in the context of Industry 4.0 [55]. ML technologies provide adaptive control capabilities and 

enable quick production line adjustments and cooperative human-robot operations that improve manufacturing 

scalability and process flexibility [56]. 

• Sustainability and Waste Reduction: Organizations now widely use ML models to enhance resource usage 

efficiency while minimizing energy consumption and waste generation [57]. Advanced systems such as 
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EcoEfficientNet process production data instantaneously to detect inefficiencies and generate data-driven 

improvement suggestions, which resulted in waste reduction by up to 30% during testing [57]. 

• Supply Chain Optimization: ML-enabled predictions enable complex global supply chains to optimize demand 

forecasts and logistics management while reducing lead times and inventory requirements [58]. Production 

engineers who use algorithms such as regression, clustering, and networks achieve better forecasts while 

reducing costs and enhancing supplier performance and delivery reliability [59]. 

Applications of ML in Production Engineering 

The best way to understand ML’s impact on production engineering lies in studying its fundamental 

application areas. 

• Predictive Maintenance: ML achieves one of its key applications in industrial settings through predictive 

maintenance practices [7]. Operational and sensor data streams are analyzed by supervised and unsupervised 

learning algorithms along with RL to predict machinery failures and suggest maintenance schedules [60]. 

Research in the oil and gas industry, together with automotive manufacturing and textile production, shows 

substantial decreases in unplanned downtime and maintenance expenses plus waste reduction while 

equipment reliability improved [19, 61]. 

Notable achievements include: 

- Automated alert systems in real-time fault detection frameworks serve to notify operators of 

operational anomalies [62]. 

- ML techniques enable better maintenance scheduling, which leads to longer machine durability and 

lower labor costs [7, 51]. 

- Internet of Things (IoT) infrastructure integration enables seamless monitoring of conditions and data 

collection capabilities [55]. 

• Process Optimization: ML demonstrates superior capability in detecting inefficiencies and refining 

manufacturing processes [2]. ML models process large datasets to assess how operating conditions and raw 

material differences impact product quality and throughput performance [55]. Real-time dynamic process 

adjustments in Industry 4.0 manufacturing settings lead to higher production yields alongside reduced 

downtime and faster responses to process variability [3]. 

For example: 

- ML applications to optimize parameters in grinding and classification operations led to better quality 

stability and enhanced overall process dependability [63]. 

- The process control accuracy of simulation-driven optimization frameworks increases by integrating 

ML with physics-based models [2]. 

• Quality Control and Defect Detection: ML transforms industrial quality assurance by: 

- ML technology enables automated defect detection and classification by enhancing image 

recognition and sensor analysis with predictive modeling techniques [54]. 

- Adaptive quality management systems drive the process by adjusting parameters according to 

detected anomalies, which ensures consistently high product quality [49]. 

- Production data enables the implementation of “zero-defect” strategies through continuous learning 

practices [64]. 
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The latest research demonstrates how ML achieves precise detection of defective products while offering 

process enhancement suggestions and delivering practical feedback to operators [53, 65]. 

• Automation and Robotics: Modern production automation relies heavily on the integration of ML with 

robotics. 

- ML-enabled collaborative robots (cobots) ensure human safety through adaptive task management 

and workflow optimization [56, 66]. 

- ML-enhanced automation provides operations with increased speed and precision while maintaining 

flexibility when dealing with complex or unpredictable environments [67, 68]. 

- Significant advancements in real-time control and vision, as well as grasping and adaptive motion 

planning, enable new opportunities for customized manufacturing growth and production scaling 

[69]. 

• Supply Chain Management and Logistics: In supply chain management, ML’s predictive power exhibits 

substantial potential. 

- ML improves demand forecasting while optimizing inventory alongside supplier prediction, which 

helps reduce both under- and over-stock occurrences [59]. 

- Causal ML enables "what-if" analysis, which aids risk mitigation and improves resilience against 

disruptions [70]. 

- The global production cost efficiency improves through automated selection of optimal 

manufacturing and delivery locations [58]. 

• Sustainability and Resource Optimization: ML contributes to sustainable manufacturing by: 

- The use of continuous data-driven monitoring and adjustments enables optimal energy and material 

usage [57]. 

- Circular economy practices benefit from ML support, which focuses on waste reduction and 

recycling plus eco-friendly operational methods [57]. 

- Real-time emissions monitoring together with adaptive process control helps achieve better 

environmental compliance [49]. 

PAST PROJECTS IN COMPANIES IMPLEMENTING ML IN PRODUCTION 

ENGINEERING 

• IBM: IBM is adopting MLOps to centralize ML model management and deployment in production. With this 

automation of many processes in the ML lifecycle, IBM tries to make the application scalable and more 

efficient. MLOps helps make sure that ML models can scale, adapt, and learn from data changes while 

delivering high performance and accuracy. Data scientists and IT teams are closely integrated with the 

company, and the work culture is very robust; models are always getting improved through feedback loops 

[71]. 

• Google: Google is the first company to adopt ML in production engineering with MLOps. It works on the 

application of ML in business applications and on the challenges of running ML models. By acquiring 

infrastructure for continuous integration and deployment, Google has made model development-to-

deployment workflows much smoother, and models remain scalable. That way Google can effectively take 

care of the lifecycle of ML models and solve problems in the real world [72]. 
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• Amazon: Amazon Robotics department used Amazon SageMaker to create a powerful ML model to automate 

inventory control in its fulfillment centers. The intent detection system developed as part of this work is based 

on DL techniques that are conditioned on large video sets to detect stowing behaviors without manual 

scanning. Amazon was able to make huge use of the resources and processing power provided by AWS 

services, which led to reduced cost and increased functionality [73]. 

• Microsoft: Microsoft has prioritized helping teams build AI applications with ML workflow best practices. 

Such as applying MLOps principles to support cross-team coordination between traditional software and ML 

teams for scalable and reliable ML systems [74, 75]. The learnings from software teams’ analysis have helped 

to build models that facilitate model training and deployment and, in the end, have helped bring ML into 

production engineering. 

• Netflix: ML is used at Netflix in all areas of operations, which makes the business applications, such as 

content recommendation and media knowledge, very helpful. Netflix’s Metaflow framework is used to create 

a strong ML platform on which to deploy and manage various ML models in the organization. This makes 

data and model building more efficient for teams working on it, which enables better predictive abilities and 

content delivery efficiencies [76]. 

OVERVIEW OF PAST RESEARCH ON ML IN PRODUCTION ENGINEERING 

The number of articles covered in this review on the ML in Production Engineering are shown in Figure 1 

from 2019 through 2024. 

 

Fig. 1: Number of articles on ML in Production Engineering vs. Year 

Table 2 below shows a quantitative distribution by publisher of the number of articles related to the 

applications of ML in Production Engineering. 
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Table 2: Number of articles from different publishers reviewed on the applications of ML in Production 

Engineering 

Publisher Number of Articles Reviewed 

Elsevier 29 

MDPI 28 

Springer 18 

IEEE 5 

ACM Digital Library 4 

Taylor & Francis 3 

ACS Publications 1 

ALL ACADEMIC RESEARCH 1 

arXiv (Cornell University) 1 

Association for Computational Linguistics (ACL) 1 

CILAMCE 1 

Darcy & Roy Press 1 

elibrary.ru 1 

Frontiers 1 

Opast Publishing Group 1 

PNT SCIENTIFIC TEMPER PRIVATE LIMITED 1 

SPE International 1 

Wiley 1 

Yandy Scientific Press 1 

Zeus Press 1 

Total 101 

 

Colyer (2019) demonstrated that data validation and software engineering are essential for integrating ML into 

production systems by utilizing Google’s extensive data validation strategies and Microsoft’s methods for 

incorporating ML into product ecosystems. Model performance degrades over time if changes in data distributions 

occur without adequate monitoring and lifecycle management [28]. Soto et al. (2019) introduced an online ML 

framework specifically designed to detect product failures early in Industry 4.0 environments. The combination of RFs 

and gradient boosting with a discrete-event simulation model for surface-mount technology (SMT) lines allowed real-

time failure detection, which enhanced equipment performance and minimized waste [77]. Paul et al. (2019) 

introduced an iterative ML model that predicts temperature patterns in additive manufacturing by using extremely 

randomized trees to maintain prediction accuracy under 1% mean absolute percentage error (MAPE) and enable real-

time process management [78]. 

Rodríguez et al. (2020) designed an intelligent decision support system using fuzzy logic and regression trees 

to improve decision-making processes for closed-loop supply chains in hospital laundry operations. The developed 

system produced classification prediction accuracy exceeding 75% and outsourcing decision accuracy above 80%, 

which matched expert evaluations closely [79]. Dučić et al. (2020) used ML models, including neural networks and 

support vector regression (SVR), to predict alloying additives for white cast iron melting processes to enhance process 
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control. The research results showed that neural networks achieved better prediction accuracy than SVR, which 

indicates their practical use for chemical composition optimization [80]. San-Payo et al. (2020) investigated quality 

control methods for clothing manufacturing through a system that combined a convolutional neural network (CNN) 

with InceptionResNET architecture and an adapted Mondrian forest for incremental learning. Their technology 

provided defect identification and adaptive classification capabilities for clothing components through images 

captured by mobile devices and delivered dependable results across multiple evaluation standards [81]. 

In their 2020 study on Laser Powder Bed Fusion (LPBF) for additive manufacturing, Gaikwad et al. 

developed the Sequential Decision Analysis Neural Network (SeDANN) model to process heterogeneous pyrometer 

and high-speed video data. The model achieved better results than conventional black-box methods because it 

included physical process knowledge, which led to substantial accuracy gains in track height deviation predictions for 

in-situ quality assurance [82]. Kaya et al. (2020) developed a Sensor Failure Tolerable model that utilizes a Single 

Plurality Voting System (SPVS) to improve sensor reliability in food production. The integration of K-Nearest 

Neighbor (kNN) and Decision Trees classifiers within an SPVS ensemble enabled consistent high accuracy in beef 

quality predictions despite sensor failures, which validated system robustness during imperfect conditions [83]. Orru 

and colleagues (2020) introduced ML methods to predict faults in centrifugal pumps utilized within the oil and gas 

sector. Their research demonstrated that SVM and Multilayer Perceptron (MLP) used on temperature, pressure, and 

vibration sensor data achieved reliable early fault detection, which led to enhanced predictive maintenance and 

operational efficiency [84]. 

The research by Arellano-Espitia et al. (2020) introduced a deep-learning fault diagnosis method for 

electromechanical systems that combines unsupervised stacked auto-encoders with supervised discriminant analysis to 

handle the complexity and multi-fault conditions present in modern manufacturing settings. Results indicated that the 

methodology achieved enhanced adaptability and application simplicity, proving its effectiveness across different 

system states while enabling more efficient maintenance procedures [85]. Lutz et al. (2021) developed an in-situ 

material batch identification system for machining operations by utilizing supervised ML techniques, including SVM, 

RFs, and Artificial Neural Networks (ANNs) to analyze torque signals. The SVM model delivered the highest 

prediction accuracy in their five material batch experiments and significantly surpassed logistic regression, which 

allowed for real-time optimization of production processes based on material characteristics [86]. Khayyati and Tan 

(2021) introduced a structured ML method to develop production control policies based on insights from vast 

production datasets to adjust control decisions effectively. The approach improved production efficiency through 

waste reduction and better resource allocation while demonstrating how data-driven strategies effectively support 

dynamic manufacturing settings [87]. 

Researchers Sauter and team in 2021 developed a method to detect grinding burn during production by using 

ML techniques to evaluate sensor readings from both acoustic emission and power channels. The research 

demonstrated exceptional classification accuracy of nearly 99% for grinding burn detection, which showed that multi-

sensor data in real-time monitoring performs much better than conventional post-process techniques [88]. Rai et al. 

(2021) examined ML's integration into the Industry 4.0 framework to show its transformative effects on 

manufacturing through predictive maintenance and quality control as well as data-based decision-making. The 

research showed that smart sensors and devices are crucial for real-time data analysis while recognizing obstacles such 

as data privacy concerns and system integration difficulties [89]. Simeone et al. (2021) created a cloud manufacturing 

framework that uses ML to provide manufacturing solutions through analysis of historical customer data. The neural 
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network-based recommendation system enhanced customer satisfaction through precise solution predictions, which 

showed a decrease in Root Mean Square Error (RMSE) values [90]. 

Through their empirical analysis of 3,000 Google production ML pipelines, Xin et al. (2021) discovered that 

traditional ML research emphasizes model training yet shows that 80% of computational time is dedicated to data 

management and validation tasks. The researchers identified inefficiencies within the pipelines while recommending 

ML-based optimization methods to minimize computational waste and enhance data preparation efficiency [91]. Kang 

and their team (2021) investigated production line predictive maintenance by applying MLP neural networks to 

estimate equipment Remaining Useful Life (RUL). ML effectiveness in maintenance strategy enhancement was 

shown through its capability to detect equipment failures early, which resulted in better resource management and 

operational scheduling [92]. Burggräf et al. (2021) tackled the problem of forecasting assembly start delays within 

manufacturing settings. A total of 24 prediction models were developed using classification and regression methods, 

which revealed that the gradient boosting classifier excelled at predicting missing components and assembly delays. 

The study highlighted how making accurate predictions at the right time helps achieve delivery deadlines and boosts 

manufacturing efficiency [93]. 

The research by Bampoula and his team in 2021 targeted predictive maintenance for cyber-physical 

production systems through the use of Long Short-Term Memory (LSTM) autoencoders. The study showed that 

LSTM autoencoders excel at classifying data from machines and sensors, which enables companies to move from 

scheduled maintenance to predictive maintenance models that function in real-time. This method enhanced operational 

efficiency through machinery life predictions while simultaneously minimizing system downtime [94]. Benbarrad et 

al. (2021) created an intelligent machine vision model tailored for quality control purposes in manufacturing settings. 

The researchers implemented ML techniques to identify defective products while predicting the best production 

parameters and achieved improvements in product quality alongside process efficiency. Their comparative study 

showed that the machine vision model functioned as a reliable defect detector while offering valuable process 

improvement insights within Industry 4.0 [95]. Researchers Siler et al. (2021) utilized unsupervised ML algorithms by 

implementing non-negative matrix factorization with k-means clustering (NMFk) to determine geothermal production 

drivers within Nevada's Brady geothermal field. The study showed that macro-scale faults and fault step-overs 

significantly influence geothermal production through an analysis of 3D geologic data, which also enhanced 

understanding of subsurface processes [96]. 

Szajna and colleagues (2021) developed the Wire Label Reader (WLR) device, which uses deep CNNs 

(DCNNs) to identify wire markings during industrial assembly processes. Their study demonstrated effective DCNN 

deployment, reaching a remarkable 99.7% accuracy rate for wire marking detection. The introduction of this 

technology reduced both assembly time and energy consumption, which led to improvements in operational efficiency 

as well as sustainability in production settings [97]. Wang et al. (2021) conducted research on offshore field reservoir 

characterization using an ensemble RF ML algorithm. The model processed field production and injection data to 

forecast oil saturation profiles and attained above 90% coefficient of determination (R2) values with less than 6% 

RMSE. The study proved that ML could improve reservoir management through existing field data while providing a 

reliable substitute for traditional approaches that depend on expensive and limited data sources [98]. Wang and his 

team (2021) utilized ML techniques like Gaussian Process Regression (GPR) and CNN models to enhance shale gas 

production optimization. The researchers found that GPR models achieved superior performance compared to other 

ML approaches by obtaining a R² of 99.99% and an RMSE of 0.0127. The application of ML to well parameter 
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optimization led to a considerable Net Present Value (NPV) increase while demonstrating ML's capability to expedite 

optimization processes and enhance well design decision-making [99]. 

The researchers Leon-Medina et al. (2021) created a multivariate time series DL model based on Gated 

Recurrent Units (GRUs) to estimate temperatures in ferronickel production electric arc furnace (EAF) linings. The 

research model achieved high accuracy while maintaining an RMSE measurement of 1.19°C and demonstrated the 

significance of data preprocessing and structural health monitoring within extreme industrial conditions [100]. Yoo 

and Kang (2021) implemented an explainable AI framework for estimating manufacturing costs based on 3D 

computer-aided design (CAD) models. The team developed a DL framework incorporating 3D gradient-weighted 

class activation mapping to display machining features and their related costs, which supports data-driven design 

choices and immediate cost feedback in the initial design stages [101]. The research by Moretti et al. (2021) solved the 

assembly line feeding challenge by combining supervised ML techniques together with optimization models to 

develop effective part-feeding strategies. The truck manufacturing case validated their hybrid method, which showed 

that the ML model achieved 83.1% of optimal assignments while resulting in a slight 6.1% cost increase [102]. 

In their 2021 study, Griffin et al. demonstrated that supervised learning techniques such as Classification and 

Regression Trees (CART) and neural networks achieved up to 97% accuracy in identifying galling wear in sheet metal 

stamping tools through acoustic emission-based monitoring, significantly surpassing unsupervised methods [103]. 

Badarinath et al. (2021) created ML substitutes for finite element analysis that estimate one-dimensional beam stress 

distributions through ANNs, which deliver superior accuracy and enable real-time maintenance planning [104]. 

Stauder and Kühl (2022) tackled sequence management in mixed-model automotive assembly lines by applying 

supervised learning to product-related features to predict sequence deviations, which resulted in a 44% detection rate 

for delayed vehicles with 50% precision while integrating a continuous learning module to adapt model performance 

[105]. 

Garouani et al. (2022) introduced a meta-learning-based tool called AMLBID, which automates ML algorithm 

selection and configuration for industrial big data while addressing manufacturing engineers' lack of ML expertise. 

The tool demonstrated superior predictive accuracy and computational efficiency over established AutoML software 

TPOT and Auto-sklearn when tested with 400 real-world datasets and reached near-constant time complexity [106]. 

Tan and Nhat (2022) examined thermoforming composite materials using ANNs with image analysis from finite 

element simulations to optimize process parameters and prediction quality. The implementation of their method 

achieved a 17.4% slip-path length reduction and expanded optimal shear angle regions by 31%, demonstrating how 

ANNs effectively minimize defects and improve formability [107]. Zhang et al. (2022) utilized SVR along with grey 

relation analysis (GRA) to enhance the optimization of gluing parameters during particleboard production. The 

researchers created a model that achieved high internal bond strength prediction accuracy through 724 training and 

181 testing datasets, thus showing real-time quality control capabilities in industrial environments [108]. 

In 2022, Grishina and Sorokin improved Spoken Language Understanding (SLU) models in production 

systems through the Local-to-Global Learning (LGL) method, which resulted in a 7.3% decrease in error rates and 

training time reductions by up to 25%. The research focused on how incremental learning can adapt to real-world 

limitations of changing and restricted data availability [109]. Salem et al. (2022) built a predictive ML model to 

identify well integrity failures in gas-lift artificial lift systems using ten years of field data from 800 wells. The 

researchers achieved perfect prediction accuracy by testing 11 ML algorithms and discovered that extreme and 

categorical boosting models performed best, while their application of domain-specific evaluation metrics alongside 
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physical risk equations created a strong and interpretable tool for optimizing safety and resources in oil and gas 

operations [110]. Hojati et al. (2022) implemented time-series imaging and CNN technology to track and forecast 

machining conditions when slot milling titanium alloys. Their model attained high precision (88%) and Area Under 

the Curve (AUC) scores above 0.95 by transforming real-time Computer numerical control (CNC) machine signals 

into Gramian Angular Field (GAF) images and implementing data augmentation to balance the dataset, which helped 

to identify important machining scenarios like tool wear and breakage [111]. 

Natanael and Sutanto (2022) demonstrated the use of low-cost components like Arduino together with basic 

sensors for a tube-filling machine's predictive maintenance system based on RF regression, achieving 88% accuracy 

while increasing Overall Equipment Effectiveness (OEE) by 13.10% and decreasing unplanned failures by 62.38% 

[112]. Tama et al. (2022) investigated malfunction detection through acoustic signal analysis by building an 

EfficientNet-based weighted ensemble DL system that surpassed individual classifiers and achieved AUC scores of 

0.9981 for pumps and 0.9993 for valves when tested with the Malfunctioning Industrial Machine Investigation and 

Inspection (MIMII) dataset [113]. The 2022 study by Cao et al. introduced a hybrid AI methodology in their 

Knowledge-based System for Predictive Maintenance in Industry 4.0 (KSPMI) system, which combined ML with 

symbolic AI through domain ontologies and Semantic Web Rule Language (SWRL) rules alongside chronicle mining 

to process diverse industrial datasets and achieved superior predictive accuracy and adaptability for both real and 

synthetic data scenarios [114]. 

The research by Motz et al. (2022) evaluated different hyperparameter optimization methods to assess their 

effectiveness for production environments and emphasized how various application needs complicate the process of 

selecting appropriate techniques. The structured approach to benchmarking combined with empirical evidence showed 

that making informed decisions about hyperparameter optimization leads to improved ML performance in production 

settings [115]. Feng and Li (2022) developed an RL-based decision model for predictive maintenance in multistage 

production systems that integrated system dynamics and bottleneck identification. The proposed model achieved 

better results than traditional maintenance approaches through cost reduction and throughput enhancement, which 

demonstrated the significance of dynamic maintenance decisions based on data analytics [116]. Bhowmik (2022) 

explored the complete lifecycle of ML deployment in production environments through an analysis of strong ML 

pipeline architecture. His research highlighted practical difficulties such as data drift and model decay along with the 

need for ongoing monitoring and automated processes throughout data validation to deployment [117]. 

Rom et al. (2022) demonstrated the application of advanced ML methods such as Residual Neural Networks 

(ResNets) within production engineering to predict both cutting forces during machining and particle behavior during 

plasma spraying. The research combined mathematical modeling techniques with ML through the use of ensemble 

Kalman filtering (EnKF) to improve prediction accuracy while decreasing computational demands [118]. Bulaev 

(2022) developed an extensive framework for deploying ML models in production settings, including key steps like 

goal setting and model training, but emphasized implementation guidelines over algorithm design [119]. Song et al. 

(2022) conducted a comparative study of ML models like Boosting Tree (BT), SVR, and MLP to evaluate their 

effectiveness in predicting sand production from gas-hydrate-bearing sands. According to their empirical study, BT 

outperformed traditional methods in predictive accuracy and highlighted model selection and tuning as critical factors 

[120]. 

Fertig and colleagues (2022) studied quality prediction in milling processes with internal machine tool data 

and evaluated nine ML algorithms along with four DL architectures, finding ensemble methods (RF, Extra Trees) and 
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deep networks (InceptionTime, ResNet) to be the most efficient for multivariate time-series classification. The 

researchers achieved precise quality monitoring by segmenting sensor data based on geometric characteristics, which 

led to high prediction accuracy and paved the way for machining process optimization [121]. Rubio-Loyola and 

colleagues (2022) targeted predictive modeling of black carbon emissions from industrial furnaces and trained their 

models with a dataset of 400,000 instances using logistic regression and Adaboost. Both predictive models performed 

exceptionally well, but logistic regression received preference for its reduced computational requirements. The 

research demonstrated the value of ML methods in monitoring emissions while providing operational insights and 

established the initial use of these techniques for predicting furnace emissions [122]. The research by Słowik and 

Urban (2022) demonstrated that their LSTM model provided better accuracy and computational efficiency for 

manufacturing microgrids' short-term energy consumption forecasting compared to both double-layer LSTM and 

CNN models while achieving a mean absolute error of 0.0464. The research confirmed that the model functioned 

effectively for immediate energy management tasks and grid operations [123]. 

The research by Nguyen et al. (2022) automated shot peening in remanufacturing through a distributed model 

predictive control system that used ML algorithms, including eXtreme Gradient Boosting (XGBoost) and sparse 

identification of nonlinear dynamics (SINDy). The proxy model successfully converted desired surface intensity into 

operational parameters, which resulted in improved accuracy and process stability while minimizing material waste 

[124]. Ibrahim et al. (2022) used ML and DL models such as XGBoost, ANN, and recurrent neural network (RNN) to 

accurately predict long-term oil, gas, and water production with R² values reaching 0.98 and demonstrated faster 

performance than traditional reservoir simulation methods. The models demonstrated high performance in oil and gas 

prediction but showed reduced accuracy in water production because of inconsistent data [125]. Li et al. (2022) 

implemented a probabilistic neural network with an enhanced particle swarm optimization algorithm to establish cost 

control classifications in manufacturing enterprises and assist with multi-objective decision-making. The study 

demonstrated practical success with their model achieving 96.1% classification accuracy and proving ML's utility for 

sustainability and stakeholder collaboration efforts [126]. 

In 2022, Stock et al. used ML techniques to enhance lithium-ion battery production through early detection 

and classification of quality attributes. The research utilized electrochemical impedance spectroscopy measurements 

along with cycling data from 29 pouch cells to develop linear regression models and ANNs. The ANN that 

demonstrated the highest performance reached a classification accuracy of 97% alongside a test error of 10.1%, which 

shows its promising capability for early quality prediction with limited observation time [127]. Park and Jeong (2022) 

developed a machine vision inspection system for mask production that used DL to enable defect detection and 

automate processes. The LAON PEOPLE NAVI AI Toolkit enabled their system to achieve a 61.1% productivity 

boost while elevating mask production from 2,600 to 4,189 masks per hour and lowering defect rates from 8.3% to 

5.69%. The integration strengthened quality assurance while reducing workforce reliance and operational weariness 

[128]. The research team led by Filho introduced a predictive maintenance framework in 2022 that targets turbine 

maintenance in hydroelectric power facilities. The team processed 16 months of turbine load cycle data through RFs 

and ANNs models to attain prediction accuracies near 98% for 12- to 48-hour pre-failure windows. The researchers 

demonstrated how Most Influential Variables (MIV) could streamline models while maintaining original performance 

levels [129]. 

A time-domain process model developed by Ko (2022) simulated 2400 machining conditions and employed 

SVM with gradient tree boosting algorithms to classify end-milling stability with about 90% accuracy while proving 
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that simulations could take the place of expensive experiments [130]. Gope et al. (2022) reviewed 440 historical 

datasets from polypropylene fiber melt spinning operations by applying DL and RF methods to enhance fiber quality 

and identify abnormal parameters, which resulted in the RF model correctly identifying quality-affecting settings with 

100% accuracy [131]. Rodríguez et al. (2022) proposed a multi-agent deep RL method to carry out predictive 

maintenance on parallel machines, which resulted in a 60% increase in operational uptime and surpassed traditional 

maintenance strategies by 75% in efficiency [132]. 

Párizs et al. (2022) examined injection molding quality prediction using four ML classifiers—kNN, naïve 

Bayes, linear discriminant analysis (LDA), and decision tree—on pressure-based sensor data where decision trees 

reached the highest prediction accuracy (>90%) while requiring minimal computation time [133]. A study by Kannan 

et al. (2022) used ML to predict production delays in a Malaysian quarry company through five models that included 

neural networks and logistic regression. The research showed that neural networks and logistic regression models 

delivered peak performance with 96.8% accuracy and 97.3% F-measure, respectively, demonstrating how unplanned 

maintenance and over-utilization of specific machines affected these results [134]. Zhou et al. (2022) analyzed quality 

monitoring in resistance spot welding by integrating domain knowledge into ML pipelines and assessing the 

performance of linear regression, multi-layer perceptron, and SVR using real-world datasets from Bosch production 

lines. The research findings confirmed that prediction performance improved significantly through domain-informed 

feature engineering, which allowed even basic algorithms to work effectively when process-aware features provided 

guidance [135]. 

Mahdi et al. (2023) introduced a ML model for artificial lift selection in oil production that reached 93% 

prediction accuracy by examining six primary parameters across 24 oil wells and thus improved both selection 

efficiency and production output significantly [136]. Choi et al. (2023) constructed a Tap Temperature Prediction 

Model (TTPM) that uses SVR and analyzes data from 4598 EAFs heats to optimize energy use in the steel industry. 

Their model implementation achieved a 17% decrease in temperature deviation and saved 282 kWh of power per heat, 

which led to both economic benefits and reduced carbon emissions [137]. In 2023, Wang et al. introduced the Quality 

Filter (QF) model, which aims to stabilize product quality in the steel manufacturing sector. By combining ML and 

expert knowledge, their model optimized processing parameters through analysis of 128 samples of wind power steel 

and achieved an 82.81% classification accuracy while reducing product property fluctuations from raw material 

inconsistencies [138]. 

Santander et al. (2023) developed a detailed ML framework for refinery production planning that combines 

supervised and unsupervised learning techniques to handle model uncertainty as well as process disturbances and time 

correlations, which results in better performance compared to traditional methods [139]. McLaughlin and Choi (2023) 

developed five ML models using historical audit data to enhance accuracy in industrial compressed air system energy 

savings estimates and discovered that the distributed RF model achieved the highest prediction accuracy and improved 

energy efficiency by reducing auditor calculation errors [140]. The Laser Welder Predictive Maintenance Model (LW-

PMM) created by Choi et al. (2023) combines autoencoders with LSTM for welder control data analysis to achieve 

high predictive maintenance accuracy that detects failures 27 hours ahead and saves facilities $23.5K yearly [141]. 

A multi-stage methodology proposed by Mehdiyev and his team in 2023 integrates Quantile Regression 

Forests to measure uncertainty along with SHapley Additive Explanations (SHAP) to enhance interpretability in 

predictive process monitoring. The model demonstrated high Prediction Interval Coverage Probability (~90%) and 

received validation through application in actual production planning scenarios, which proved its capability to enhance 
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decision-making under uncertain conditions [142]. Abdelkader et al. (2023) investigated robustness challenges that 

arise during the implementation of ML models in production environments and underscored the importance of 

transparency and safety through standardized terminologies. They deployed protective patterns designed for ML and 

software systems, which increase model stability and trustworthiness in critical industrial applications [143]. Prabha et 

al. (2023) studied real-time data-driven modeling techniques that combined linear regression with decision trees to 

create fault forecasts while optimizing production parameters, including temperature and load. The study concluded 

that decision trees performed better than regression models, which supported improvements in predictive maintenance 

and operational efficiency [144]. 

Liu et al. (2023) targeted improvements in oil and gas production forecasts by utilizing static and dynamic ML 

models and highlighted data preprocessing and hyperparameter optimization as essential steps for better model 

performance. The research demonstrated that SVM and neural networks achieved better predictive accuracy and faster 

modeling performance than traditional methods [145]. Min et al. (2023) explored ML techniques for production 

prediction within the Coal Bed Methane (CBM) industry while concentrating on model interpretability alongside 

causal discovery. The combination of causal graphs with latent relationship analysis among geological, engineering, 

and treatment variables led to improved prediction accuracy between 5–31% while maintaining alignment with known 

CBM production mechanisms [146]. Kabir et al. (2023) optimized green hydrogen production processes through ML 

algorithms specifically targeting proton exchange membrane (PEM) and dark fermentation (DF) technologies for 

circular economy applications. The researchers used kNN and RF models to determine production efficiencies and 

identify crucial process parameters, including temperature and chemical oxygen demand, through permutation and 

partial dependency analyses [147]. 

Beni et al. (2023) applied ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS) models to predict the 

energy efficiency and environmental footprint of almond and walnut farming processes and achieved outstanding R² 

values up to 0.997 using ANFIS, which displayed great potential for agricultural sustainability enhancement [148]. Du 

et al. (2023) developed a forecasting model for coalbed methane production using a bidirectional LSTM (Bi-LSTM) 

framework augmented with transfer learning techniques. The model achieved more than a 15% increase in prediction 

accuracy over conventional methods while keeping error margins below 200 m³, which demonstrated its strength in 

small-sample applications and cross-well knowledge transfer abilities [149]. Singh et al. (2023) investigated biomass 

production optimization utilizing a decision tree algorithm to pinpoint key cultivation parameters for microalgae 

grown in wastewater. Experimental validation confirmed that the model achieved 81.25% accuracy with a 10% error 

margin, which proved both its predictive capability and scalability [150]. 

Tahir et al. (2023) applied ANNs to optimize hydrogen production from biomass gasification integrated with 

chemical looping by predicting syngas composition and determining optimal operating conditions, which resulted in a 

high R² value of 0.99 [151]. Yadav et al. (2023) created an optimized Synechococcus elongatus strain for increased 

isoprene production through an ANN coupled with a genetic algorithm (ANN-GA) system that optimized growth 

conditions and achieved a 29.52-fold production increase, which surpassed traditional statistical methods [152]. Cheng 

et al. (2023) used SVM, among other ML models, to predict green hydrogen production from photovoltaic (PV)-

powered water electrolysis across different Chinese regions, which resulted in R² values above 0.95 and exhibited 

spatial variability in hydrogen potential performance superior to FbProphet [153]. 

In 2024, Zhao explored ML's transformative potential for predictive maintenance and design optimization 

while demonstrating how production efficiency gains through real-time data analysis integrated with IoT and cloud 
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tech enable intelligent automation in mechanical systems [13]. Bost (2024) presented a structured framework that 

integrates ML into production engineering operations through a model register approach combined with data review 

and an ML opportunity matrix, which identifies suitable areas for ML application, including supervised learning to 

improve production optimization and turndown management as well as maintenance planning [2]. Wang et al. (2024) 

tackled production scheduling challenges in environments with high variability by creating the EMA-DCPM (dynamic 

critical path method) algorithm that used attention mechanisms and ML to accurately predict job times and enhance 

traditional critical path methods [154]. 

Naveed et al. (2024) explored responsible ML deployment challenges in dynamic production settings through 

their model-driven engineering technique, which monitors fairness, privacy, and safety during runtime. Through 

developing a meta-model and prototype, their research showed initial success in detecting human-centric requirement 

breaches but also recognized further development was necessary to adapt to changing operational requirements [155]. 

Bappy and Ahmed (2024) conducted empirical evaluations to assess the effects of ML on data collection methods 

applied to manufacturing and mechanical engineering fields. Their research demonstrated through 20 case studies and 

15 industry reports that ML models such as neural networks and SVM achieved superior performance compared to 

traditional methods by reaching up to 95% accuracy improvement and reducing data collection time by 40% while 

decreasing defect detection errors and operational costs by 25% [14]. The research by Husom et al. (2024) expanded 

production engineering ML applications through the inclusion of environmental sustainability practices in the ML 

development lifecycle. The research team presented the CEMAI pipeline framework that processed sensor data from 

CNC machining and broaching operations across three industrial case studies to monitor ML development carbon 

emissions while optimizing their impact. Husom et al. (2024) showed how carbon-aware configurations can maintain 

model performance while lowering environmental impact [156]. 

Lemke et al. (2024) used ML models, including Ridge Regression, RF, and XGBoost, to predict egg 

production in poultry farming from multivariate time series data and found Ridge Regression achieved the lowest 

Mean Squared Error (MSE) of 19.74 and MAPE of 3.81% with a 7-day sliding window technique. The results showed 

how the model improved accuracy for agricultural production planning [157]. Yuan et al. (2024) researched ML-based 

modeling techniques to enhance hydrothermal and pyrolysis carbonization for biochar production from aquatic 

biomass materials. The researchers created a dataset of 586 data points to train tree-based models, where RF 

Regression obtained the highest accuracy for hydrochar-related outputs at R² values up to 0.98, while XGBoost 

performed well for pyrochar metrics. The research demonstrated both the importance of feedstock elemental 

composition for yield prediction and the effectiveness of their models by showing their ability to generalize through 

iterative learning [158]. Vats and Kumar (2024) used ML algorithms to study and improve nanoemulsion production 

through continuous ultrasonication. Their models achieved precise droplet size predictions by modifying the oil-to-

surfactant ratio (OSR) and energy density and determined that an OSR of 4 maintained nanoemulsion stability for 50 

days while supporting scalable production [159]. 

The team of D’Oelsnitz et al. (2024) engineered an Amaryllidaceae enzyme in Escherichia coli through the 

use of a structure-based ResNet named MutComputeX, which was fused with a biosensor system to improve 

biocatalytic efficiency in therapeutic alkaloid synthesis. The application of their strategy resulted in a 60% product 

titer rise together with a doubling of catalytic activity and a three-fold decrease in off-product formation, which 

demonstrated ML capabilities in molecular production enhancement [160]. Vuković et al. (2024) developed a multi-

objective optimization system using local ML models for the ironmaking industry to investigate and control system 
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interdependencies. A sintering plant case study revealed that process output improvements and operational cost 

reductions were achieved by quantifying system interdependencies through causality-informed ML models while 

demonstrating the importance of transparency and domain knowledge in industrial process optimization [161]. Cruz et 

al. (2024) introduced a fully automated ML methodology designed specifically for small and medium-sized 

enterprises (SMEs) that combines automated ML pipelines with multi-objective optimization features to create 

production models. The real manufacturing process saw a 3.19% productivity gain and a 2.15% defect rate drop when 

the researchers applied their methodology, which surpassed traditional trial-and-error techniques [162]. 

The research by Ross-Veitía et al. (2024) compared multiple regression-based ML models to forecast 

industrial steam boiler emissions (CO, CO₂, NOₓ) from operational data and found Gradient Boosting Regression 

(GBR) to deliver superior results with a R² of 99.80% and a mean absolute error of 0.51, thus boosting combustion 

efficiency and environmental compliance [163]. Xu et al. (2024) developed a ML approach that combined molecular 

reaction mechanisms with big data processing to optimize chemical processes through multi-objective optimization, 

achieving simultaneous improvements in conversion rates (4.44%), product yields (4.25%), energy use (−6.23%), and 

greenhouse gas (GHG) emissions (−12.60%) [164]. Wang et al. (2024) used ANNs to develop a 6-bed, 12-step 

vacuum pressure swing adsorption (VPSA) system for coke oven gas hydrogen recovery, which achieved 99.99% 

hydrogen purity and up to 66.54% exergy efficiency while showing purity-recovery tradeoffs through Non-dominated 

Sorting Genetic Algorithm II (NSGA-II) optimization [165]. 

In 2024, Chu's research combined GPR with neural networks to model Z-axis displacement and detect sensor 

anomalies in machine tools for enhanced machining precision and operational stability [166]. Asiedu et al. (2024) 

conducted research on solar PV production forecasting using ML, which revealed that different models performed best 

at different forecast horizons: ANNs worked best for day-ahead predictions, while hybrid XGBoost–RF models 

excelled in week-ahead forecasts, and RFs performed best for long-term forecasts, showing the necessity of choosing 

models based on specific temporal forecasting needs [167]. Lahafdoozian et al. (2024) investigated hydrogen 

production from plastic waste through gasification processes by combining process simulations with ML techniques to 

optimize the process. The study demonstrated that RF models effectively predicted hydrogen yield with R² values 

above 0.99 and highlighted how temperature was the main factor for optimal cold gas efficiency and hydrogen 

production [168]. 

The study by Shahzad et al. (2024) applied both ANN and SVM to model solar-to-formic acid conversion and 

found SVM to exhibit superior predictive accuracy, which resulted in producing 2.25 × 10⁶ g of formic acid from 2355 

kW generated by a dual-axis PV tracker in Vietnam [169]. The Spatial Correlation-based ML Prediction Model (SC-

MLPM) framework created by Yi et al. (2024) predicts shale gas locations in China’s Sichuan Basin through an 

enhanced kNN and Huber loss-based XGBoost (Hu-XGB) model, which achieved a mean relative error of only 9.8% 

while accurately locating productive sweet spots [170]. Yang et al. (2024) investigated hydrogen production 

capabilities in 100 MW PV systems under Kucha conditions with seven ML models and found LSTM to be the top 

performer (R² = 0.8402), while also discovering heterojunction with intrinsic thin layer (HJT) PV technology as the 

most cost-effective method to reduce hydrogen production expenses [171]. The research team led by Elaziz et al. 

(2024) created the LSTM-election-based optimization algorithm (EBOA) model, which successfully predicted 

freshwater production in membrane desalination systems with near-perfect accuracy (R² = 0.998 training; 0.988 

testing) while outperforming other optimized LSTM models in RMSE evaluations [172]. Leng et al. (2024) utilized 

GBR and RF algorithms to enhance hydrochar production from biomass hydrothermal carbonization and found GBR 
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achieved better prediction accuracy with an average R² of 0.93 while identifying important operational parameters 

affecting yield and composition [173]. 

CHALLENGES AND FUTURE DIRECTIONS IN ADOPTING ML IN 

PRODUCTION ENGINEERING 

Challenges 

Organizations struggle to maximize the potential of ML solutions in production settings even though ML 

offers significant benefits. 

• Data Quality and Representativeness: ML models show compromised reliability when they use inadequate 

training data with poor quality, unrepresentative samples, and imbalanced data sets [174]. Ongoing data 

validation combined with quality assurance processes remains an essential task [174]. 

• Model Interpretability: The opaque nature of ML models through DL approaches creates significant 

challenges for explainability and compliance in vital industrial applications [175]. 

• Integration Complexities: The integration of ML with existing industrial systems demands extensive technical 

knowledge and generates substantial expenses for compatibility with older infrastructure systems [64]. 

• Operational Robustness: ML deployments need to resist diverse data patterns along with changing process 

parameters and environmental conditions through strong and flexible model management techniques [143]. 

• Workforce Skills and Cultural Change: Personnel training along with cross-functional collaboration (MLOps) 

and development of a data-centric operational culture drive successful ML implementation in manufacturing 

[176]. 

• Ethical, Regulatory, and Security Concerns: The growing presence of AI and ML systems requires a proactive 

approach to security, transparency, and workforce challenges [68]. 

Future Directions 

Progress in ML combined with fast digital transformation and Industrial IoT development defines the 

emerging production engineering paradigm. 

• Edge and Federated Learning: Lightweight ML models are implemented on edge devices positioned on the 

production floor to support real-time decision-making by reducing latency [3]. 

• Hybrid and Physics-Informed Models: The integration of ML with conventional engineering simulations 

produces better accuracy and interpretability in modeling complex processes [19]. 

• Autonomous and Collaborative Robotics: Robots will utilize RL together with natural language processing to 

achieve greater autonomy and intelligent adaptation while ensuring safer human-robot collaboration [56]. 

• Sustainability-Driven Analytics: Manufacturing stages require advanced ML systems that focus on waste 

reduction and resource optimization to reach sustainability goals [57]. 

• Human-in-the-Loop and Explainable AI: Model transparency combined with workforce collaboration 

produces reliable and practical outcomes in essential industrial applications [175]. 

CONCLUSION 

The study investigates how ML methods have been incorporated into production engineering processes. ML 

applications have led to major advancements in production processes through defect detection capabilities and 

optimization of manufacturing parameters. The application of ML results in improved product quality and greater 

process efficiency, according to multiple studies presented in the paper. The study demonstrates how predictive 
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maintenance models have replaced traditional maintenance systems through the implementation of LSTM 

autoencoders. Real-time monitoring and machine data classification during this transition become essential for 

reducing downtime and boosting operational reliability. The review provides examples of multiple ML applications in 

production engineering that span predictive maintenance and quality control to resource allocation. Machine vision 

models demonstrate effectiveness in quality control by detecting defects and generating useful insights within Industry 

4.0 applications. The significance of strong model validation and testing processes becomes evident as they ensure 

ML models perform well on new data and satisfy actual production requirements. Building stakeholder trust requires 

the adoption of comprehensive testing strategies along with prioritizing reproducibility and interpretability. Future 

research directions as identified by the paper include both algorithm refinement in ML as well as the discovery of new 

production engineering applications. The process requires selecting models that fit particular production situations 

while implementing explainable AI to improve transparency in decision-making. The detailed assessment reveals how 

ML can revolutionize production engineering and calls for ongoing research and application of these technologies to 

advance industrial efficiency and innovation. 
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